Proton Neutron


In a recently published article J. T. Nielsen, A. Guffanti & S. Sarkar have reported only Marginal evidence for cosmic acceleration from Type Ia supernovae. This bold faced phrase is the title of the paper which was based on data from 740 supernovas. I reproduce below the paper’s abstract.

The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

The Higgs Boson and Quark Compositeness

I am recreating this post that was erased somehow, I do not know how.

Considering that each quark is composed of two prequarks, called primons, it is shown that the recently found neutral Higgs-like boson belongs to a triplet constituted of a neutral boson and two charged bosons and , and that is, actually, a triplet and both and are doublets. The quantum numbers of these bosons are calculated and shown to be associated to a new kind of hypercharge which is directly related to the weak decays of hadrons and to the CKM matrix elements. Solutions to the proton spin puzzle and to other problems of particle physics are presented. 

This above text is the abstract of the paper The Higgs-like Bosons and Quark Compositeness.


Another paper on the same subject, but with further developments, was presented at Moriond 2104. The paper is called The Higgs boson and quark compositeness. You cann also take a look at its presentation.

Quark Compositeness and the Proton Radius Puzzle

The proton radius puzzle comes about from the discrepancy between measurements for the proton radius using electrons and using muons. The current CODATA data for only electronic spectroscopy data is 0.8758(77) fm . Including electron scattering results, CODATA finds the overall result of 0.8775(51) fm. The first results of muonic hydrogen (Collaboration of Randolf Pohl et al.) […]

Ver Mais