Proton Neutron


The figure below from a DO Collaboration paper has been used as a proof for the non-existence of quark compositeness. But when we read the DO paper we clearly see that it refers to a very high compositeness scale in the TeV range (Take a look at the first three references of the DO paper), but as we see in the posts in this web page  BIASED NUCLEON STRUCTURE and The article PLOT OF THE WEEK – QUARK COMPOSITENESS IS NOWHERE NEAR is wrong the true compositeness scale is just 1 GeV and quark compositeness has not already been established because there is a complete entanglement between primons (prequarks) and valence quarks, and between valence and constituent quarks, besides the fact that primons should be very light. What the quark compositeness searches in the TeV range yield is, actually, that primons (prequarks) are not composite. Therefore, the quark compositeness searches in the TeV range are completely misleading.

It is worth recalling that electrical charges do not appear in Bjorken scaling structure functions. And also we should have in mind that at high q square the de Broglie wavelength h/q is very small and, thus, we probe the 3 inner prequarks in the nucleon and identify them as being 3 valence quarks due to the lack of identification of their electrical charges.

D0 figure


The DO paper above mentioned: DO Collaboration, First Measurement of Dijet Angular Distributions in the TeV Regime nd Searches for Quark compositeness and Extra Dimensions, DO Note 5333-CONF.

The first three references of the above paper are:

[1] E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, “Super Collider Physics,” Rev. Mod. Phys. 56, 579 (1984) [Addendumibid. 58, 1065 (1986)].

[2] P. Chiappetta and M. Perrottet, “Possible bounds on compositeness from inclusive one jet production in large hadron colliders,” Phys. Lett. B 253, 489 (1991).

[3] K. D. Lane, “Electroweak and flavor dynamics at hadron colliders,” arXiv:hep-ph/9605257.



This also means that other experiements on quark compositeness carried out in the TeV region produce null results, of course.

Towards a solution for the weak radiative hyperon decays puzzle

The weak radiative hyperon decays problem is a long standing puzzle of about 50 years. It has its origin in the results of experiment [1] which showed a large asymmetry in the decay  Sigma+  >  p gamma, violating, thus, Hara’s theorem [2] which, at the hadron level, states that the parity-violating amplitude of the above decay  vanishes in exact SU(3)-flavor symmetry.

[1] L. K. Gershwin et al., Phys. Rev. 188, 2077 (1969).

[2]  Y. Hara, Phys. Rev. Lett. 12, 378 (1964).


I show in this paper that this is another proof of quark compositeness. Please, take a look at the paper by clicking right here.