Proton Neutron




(Chart from the paper The Higgs boson and quark compositeness published in Moriond 2014 proceedings)


Taking into consideration the above chart for quark transitions in terms of Higgs-like bosons due to selection rules dictated by the quantum number ∑3 , the neutral Higgs-like bosons H0 (+1) and H0 (-1) can be found, for example, in the excesses, above SM values, of the decays t>u H0 (+1) and b>u H0 (-1) , which in terms of the quantum number ∑3 mean, respectively, +1 = 0 + (+1) and -1 = 0 + (-1). As for the charged Higgs-like boson H+ (+2), we should look for excesses in the decays t>b H+ (+2) and t>s H+ (+2), which mean  +1 = -1 + (+2) in terms of ∑3. And with the transition b>c H (-2) we could  also corroborate BaBar results. For more details take a look at other posts in this web page. It is important to have in mind that all Higgs decays seen up to now obey the selection rules  dictated by ∑ . Please, take a look at the post

 All Higgs decays linked to a new quantum number

Number of mass peaks for the Higgs-like bosons

As shown in the papers The Higgs-like Bosons and Quark Compositeness and The Higgs boson and quark compositeness  the Higgs-like bosons quantum numbers are given by the table

Boson 3
H0 0 ±1
H+, H  ±1 ±2

As it is clear from the calculation in the paper The Higgs-like Bosons and Quark Compositeness, H0+1 and H0-1 refer to particle and antiparticle, and thus, in terms of mass, H0+1 and H0-1 should have the same mass. Therefore, H0 has two masses. Following this reasoning we expect H++1 and H+-1 to have the same mass which should be equal to the mass of H+1 and H-1 , and thus these four bosons should have the same mass. The same should hold for H++2, H+-2, H+2 and H-2  that should have the same mass. Therefore, the eleven Higgs-like bosons should have four different masses. The number eleven comes from three H0, four H+ and four H–  and includes particles and antiparticles.

The bosons H+ and H  can be found from weak decays of heavy mesons such as the B mesons decays analyzed by the BaBar collaboration which reported an excess that points in the direction of charged Higgs-like bosons. For references, please take a look at the above paper The Higgs boson and quark compositeness  or go directly to

BaBar homepage.