Proton Neutron

Number of mass peaks for the Higgs-like bosons

As shown in the papers The Higgs-like Bosons and Quark Compositeness and The Higgs boson and quark compositeness  the Higgs-like bosons quantum numbers are given by the table

Boson 3
H0 0 ±1
H+, H  ±1 ±2

As it is clear from the calculation in the paper The Higgs-like Bosons and Quark Compositeness, H0+1 and H0-1 refer to particle and antiparticle, and thus, in terms of mass, H0+1 and H0-1 should have the same mass. Therefore, H0 has two masses. Following this reasoning we expect H++1 and H+-1 to have the same mass which should be equal to the mass of H+1 and H-1 , and thus these four bosons should have the same mass. The same should hold for H++2, H+-2, H+2 and H-2  that should have the same mass. Therefore, the eleven Higgs-like bosons should have four different masses. The number eleven comes from three H0, four H+ and four H–  and includes particles and antiparticles.

The bosons H+ and H  can be found from weak decays of heavy mesons such as the B mesons decays analyzed by the BaBar collaboration which reported an excess that points in the direction of charged Higgs-like bosons. For references, please take a look at the above paper The Higgs boson and quark compositeness  or go directly to

BaBar homepage.

Number of mass peaks for the Higgs-like bosons

As shown in the papers The Higgs-like Bosons and Quark Compositeness and The Higgs boson and quark compositeness  the Higgs-like bosons quantum numbers are given by the table Boson ∑3 H0 0 ±1 H+, H–  ±1 ±2 As it is clear from the calculation in the paper The Higgs-like Bosons and Quark Compositeness, H0+1 and […]

Ver Mais