Proton Neutron

The Multi-Bang Universe: The Never-Ending Realm of Galaxies

In this article a new cosmological model is proposed for the dynamics of the Universe and the formation and evolution of galaxies. It is shown that the matter of the Universe contracts and expands in cycles, and that galaxies in a particular cycle may have imprints from the previous cycle. It is proposed that RHIC’s liquid gets trapped in the cores of galaxies in the beginning of each cycle and is liberated with time and is, thus, the power engine of AGNs. It is also shown that the large-scale structure is a permanent property of the Universe, and thus, it is not created. It is proposed that spiral galaxies and elliptical galaxies are formed by mergers of nucleons vortices (vorteons) at the time of the big squeeze and immediately afterwards and that the merging process, in general, lasts an extremely long time, of many billion  years. The evaporation rate of RHIC’s liquid is calculated with Quasar PDS 456 data and the true nature of the concentrated mass at its center is revealed. It is not a Black Hole but the mass is of the same order of the supposed Black Hole. It is concluded that the Universe is eternal and that space should be infinite or almost. The paper has been published on March 15, 2007 by Frontiers in Science. Here is the link for accessing the paper.


I was alerted by an important Particle Physics physicist on Robert Hofstadter results about the nucleon structure cited by me by means of the reference Rev. Modern Phys. Vol. 28, 214, 1956. He sent me the very important reference by R. Hofstadter, F. Bumiller and M. R. Yearian, Electromagnetic Structure of the Proton and Neutron (Rev. Modern Phys. Vol. 30(2), 482, 1958) in which details of the charge distribution around 0.2 fm are absent. His criticism had exactly to do with this fact. I recognize that I should have complemented my above reference and cited other references by Hofstadter and, more importantly, the interpretation by L Durand of Hofstadter results.




Going deeper into the matter, we can say that the charge distributions shown in this  figure above are also due to the work of Robert R. Wilson (then at Cornell University) et al.  and also in part due to the interpretation of Hofstadter results by L. Durand as shown in the paper by Robert A. Wilson, Electric Structure of Nucleons in which one finds a similar figure for the nucleons charge densities (Figure 5). This is also mentioned in the references of Robert Wilson paper:

[3] R. HOFSTADTER and R. HERMAN – Phys. Rev. Letters 6, 293 (1961); see, however, the reinterpretation of some of these results by L. DURAND, Phys. Rev. Letters 6, 631 (1961).


It is also important to take into account what R. Wilson says at the beginning of the above mentioned paper

“In an age of giant accelerators, of complex experiments and of mystifying theories it is a pleasure to report on some simple experiments, made with simple equipment and having a simple interpretation – simple, that is, if one doesn’t look too closely. The electron energies now available are about 1 Gev and the de Broglie wavelength of such electrons is about  0. 2 fermis, hence we can expect to make out some of the details of the proton and neutron.

Last year at the Rochester Conference, as a result of scattering experiments made at Stanford University [ 1] with their Linac and at Cornell University [ 2] with our electron synchrotron, we were both able to report the beginning of a detailed structure in that for large momentum transfers the electric and magnetic form factors were no longer nearly equal – as had previously been believed to be true for energies less than about 500 Mev.

During the past year, the measurements at Stanford [3], [4] and at Cornell [5], [6] have been considerably refined and extended.”


It is important to pinpoint that these experiments and their interpretations took place before the advent of the Quark Model. This means that the interpretations were not influenced by the Quark Model and are, thus  genuine interpretations. I mention this to contrast it with the recent interpretations, completely biased by the Quark Model of point-like quarks in which the first peak of the proton charge distribution is shifted to higher r and the second peak does not appear. For example, the reader can take a look at the work by June L. Matthews Structure of the proton, neutron, and deuteron from scattering of polarized electrons by polarized gas targets.

I saw this above figure for the first time in the book Mechanics – Berkeley Physics course, vol. 1 (by C. Kittel, W. D. Knight, and M. A. Ruderman, McGraw-Hill Book company), in its Portuguese edition dated from 1965 by Editora Edgard Blücher, São Paulo, when I was an undergraduate Physics student at UFPE in the 1970’s (please, take a look at the section About Prof. M. E. de Souza) and I reproduce it below. In the Portuguese edition the figure is on page 429.



It is also important to pinpoint that the Nobel Prize committee which awarded the Nobel Prize to Robert Hofstadter took into account the fact of his findings on the internal structure of the nucleons when it said that the prize was “for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons”.  But I dare to say that Robert Wilson should also have shared the prize.

I end this post saying that my work reconciles the Quark Model with Hofstadter and Wilson results and reveals that valence quarks are, actually, prequarks, and constituent quarks are the true quarks, and also solves many problems of Particle Physics. Please, take a look at other important posts in this web page such as False proof of valence quarks.

It is more than obvious that the internal structure which is common to both nucleons is the nucleon hard core seen by many different experiments and seen more recently by the TOTEM COLLABORATION.

It is also important to pinpoint that my work does not go against QCD, only shows that QCD is a sort of mean field theory that simplifies matters because, as it is easily grasped from these posts, primons are very complicated to be described.  The Dirac equations  for the two primons of each quark should be coupled equations and there are other complications.  Therefore, QCD IS A GREAT THEORY AND WILL GO ON AS SUCH.


  (Chart from the paper The Higgs boson and quark compositeness published in Moriond 2014 proceedings)   Taking into consideration the above chart for quark transitions in terms of Higgs-like bosons due to selection rules dictated by the quantum number ∑3 , the neutral Higgs-like bosons H0 (+1) and H0 (-1) can be found, for […]

Ver Mais

Number of mass peaks for the Higgs-like bosons

As shown in the papers The Higgs-like Bosons and Quark Compositeness and The Higgs boson and quark compositeness  the Higgs-like bosons quantum numbers are given by the table Boson ∑3 H0 0 ±1 H+, H–  ±1 ±2 As it is clear from the calculation in the paper The Higgs-like Bosons and Quark Compositeness, H0+1 and […]

Ver Mais

The Higgs Boson and Quark Compositeness

I am recreating this post that was erased somehow, I do not know how. Considering that each quark is composed of two prequarks, called primons, it is shown that the recently found neutral Higgs-like boson belongs to a triplet constituted of a neutral boson and two charged bosons and , and that is, actually, a […]

Ver Mais


The article Plot of the week – quark compositeness is nowhere near posted in Tommaso Dorigo’s blog is wrong. After reading this post, please take a look at the post BIASED NUCLEON STRUCTURE. As I explain in the paper The Higgs Boson and Quark Compositeness (presented at Moriond 2014), and in its presentation, and in the paper Weak decays […]

Ver Mais

All Higgs decays linked to a new quantum number


Ver Mais

Quark decays via virtual Higgs-like bosons

The figure below is part of the paper presented at Moriond 2014. See the whole paper at the link. The transition from b to c is compatible with BaBar results as shown in BaBar’s paper.     Abstract Considering that each quark is composed of two prequarks it is shown that the recently found Higgs boson belongs […]

Ver Mais

At Moriond 2014 (XLIXTH Rencontres de Moriond) I presented the paper The Higgs boson and quark compositeness

At the Rencontres de Moriond 2014 ( in La Thuile, Italy, I presented the talk The Higgs Boson and Quark Compositeness in which I show that the recently found Higgs boson is just one of the bosons of a large multiplet. To see the talk, please click on the link The corresponding paper related to […]

Ver Mais

The SM Higgs boson does not exist

The SM Higgs boson does not exist simply because quarks are composite.  Somebody may say now ‘come on, we haven’t seen it’, and the truth is that we have seen several indications of it. The first one was found in 1956 by Hofstadter when he determined the electric charge distributions in both nucleons. One can […]

Ver Mais