Proton Neutron

The Multi-Bang Universe: The Never-Ending Realm of Galaxies

In this article a new cosmological model is proposed for the dynamics of the Universe and the formation and evolution of galaxies. It is shown that the matter of the Universe contracts and expands in cycles, and that galaxies in a particular cycle may have imprints from the previous cycle. It is proposed that RHIC’s liquid gets trapped in the cores of galaxies in the beginning of each cycle and is liberated with time and is, thus, the power engine of AGNs. It is also shown that the large-scale structure is a permanent property of the Universe, and thus, it is not created. It is proposed that spiral galaxies and elliptical galaxies are formed by mergers of nucleons vortices (vorteons) at the time of the big squeeze and immediately afterwards and that the merging process, in general, lasts an extremely long time, of many billion  years. The evaporation rate of RHIC’s liquid is calculated with Quasar PDS 456 data and the true nature of the concentrated mass at its center is revealed. It is not a Black Hole but the mass is of the same order of the supposed Black Hole. It is concluded that the Universe is eternal and that space should be infinite or almost. The paper has been published on March 15, 2007 by Frontiers in Science. Here is the link for accessing the paper.

WHERE TO LOOK FOR THE OTHER HIGGS-LIKE BOSONS?

Figura

 

(Chart from the paper The Higgs boson and quark compositeness published in Moriond 2014 proceedings)

 

Taking into consideration the above chart for quark transitions in terms of Higgs-like bosons due to selection rules dictated by the quantum number ∑3 , the neutral Higgs-like bosons H0 (+1) and H0 (-1) can be found, for example, in the excesses, above SM values, of the decays t>u H0 (+1) and b>u H0 (-1) , which in terms of the quantum number ∑3 mean, respectively, +1 = 0 + (+1) and -1 = 0 + (-1). As for the charged Higgs-like boson H+ (+2), we should look for excesses in the decays t>b H+ (+2) and t>s H+ (+2), which mean  +1 = -1 + (+2) in terms of ∑3. And with the transition b>c H (-2) we could  also corroborate BaBar results. For more details take a look at other posts in this web page. It is important to have in mind that all Higgs decays seen up to now obey the selection rules  dictated by ∑ . Please, take a look at the post

 All Higgs decays linked to a new quantum number

Number of mass peaks for the Higgs-like bosons

As shown in the papers The Higgs-like Bosons and Quark Compositeness and The Higgs boson and quark compositeness  the Higgs-like bosons quantum numbers are given by the table Boson ∑3 H0 0 ±1 H+, H–  ±1 ±2 As it is clear from the calculation in the paper The Higgs-like Bosons and Quark Compositeness, H0+1 and […]

Ver Mais

The Higgs Boson and Quark Compositeness

I am recreating this post that was erased somehow, I do not know how. Considering that each quark is composed of two prequarks, called primons, it is shown that the recently found neutral Higgs-like boson belongs to a triplet constituted of a neutral boson and two charged bosons and , and that is, actually, a […]

Ver Mais

All Higgs decays linked to a new quantum number

     

Ver Mais