Proton Neutron

The Multi-Bang Universe: The Never-Ending Realm of Galaxies

In this article a new cosmological model is proposed for the dynamics of the Universe and the formation and evolution of galaxies. It is shown that the matter of the Universe contracts and expands in cycles, and that galaxies in a particular cycle may have imprints from the previous cycle. It is proposed that RHIC’s liquid gets trapped in the cores of galaxies in the beginning of each cycle and is liberated with time and is, thus, the power engine of AGNs. It is also shown that the large-scale structure is a permanent property of the Universe, and thus, it is not created. It is proposed that spiral galaxies and elliptical galaxies are formed by mergers of nucleons vortices (vorteons) at the time of the big squeeze and immediately afterwards and that the merging process, in general, lasts an extremely long time, of many billion  years. The evaporation rate of RHIC’s liquid is calculated with Quasar PDS 456 data and the true nature of the concentrated mass at its center is revealed. It is not a Black Hole but the mass is of the same order of the supposed Black Hole. It is concluded that the Universe is eternal and that space should be infinite or almost. The paper has been published on March 15, 2007 by Frontiers in Science. Here is the link for accessing the paper.

WHERE TO LOOK FOR THE OTHER HIGGS-LIKE BOSONS?

Figura

 

(Chart from the paper The Higgs boson and quark compositeness published in Moriond 2014 proceedings)

 

Taking into consideration the above chart for quark transitions in terms of Higgs-like bosons due to selection rules dictated by the quantum number ∑3 , the neutral Higgs-like bosons H0 (+1) and H0 (-1) can be found, for example, in the excesses, above SM values, of the decays t>u H0 (+1) and b>u H0 (-1) , which in terms of the quantum number ∑3 mean, respectively, +1 = 0 + (+1) and -1 = 0 + (-1). As for the charged Higgs-like boson H+ (+2), we should look for excesses in the decays t>b H+ (+2) and t>s H+ (+2), which mean  +1 = -1 + (+2) in terms of ∑3. And with the transition b>c H (-2) we could  also corroborate BaBar results. For more details take a look at other posts in this web page. It is important to have in mind that all Higgs decays seen up to now obey the selection rules  dictated by ∑ . Please, take a look at the post

 All Higgs decays linked to a new quantum number

At Moriond 2014 (XLIXTH Rencontres de Moriond) I presented the paper The Higgs boson and quark compositeness

At the Rencontres de Moriond 2014 (http://moriond.in2p3.fr/QCD/2014/) in La Thuile, Italy, I presented the talk The Higgs Boson and Quark Compositeness in which I show that the recently found Higgs boson is just one of the bosons of a large multiplet. To see the talk, please click on the link http://moriond.in2p3.fr/QCD/2014/SundayAfternoon/Everaldo.pdf The corresponding paper related to […]

Ver Mais

The Quantum Numbers of the Higgs Boson

There should be three Higgs-like bosons, a neutral boson H0 and two charged bosons, H+ and H–, arranged in a triplet and a quadruplet, respectively, as shown in the papers The Higgs-like Bosons and Quark Compositeness that clearly shows that the bosons have Spin 0 and are, thus, scalar bosons, and also that they carry  new […]

Ver Mais

The SM Higgs boson does not exist

The SM Higgs boson does not exist simply because quarks are composite.  Somebody may say now ‘come on, we haven’t seen it’, and the truth is that we have seen several indications of it. The first one was found in 1956 by Hofstadter when he determined the electric charge distributions in both nucleons. One can […]

Ver Mais