Proton Neutron

DARK MATTER DOES NOT EXIST AT ALL

In this very important paper I show that the baryonic matter density in galaxies is sufficient for closing the Universe. Where is the trick? It is just the consideration that the expansion of the Universe is not homogeneous at all and happens by means of voids as has been proven by observations since the pioneering work of de Lapparent, Geller and Huchra whose abstract is:

“A preliminary discussion is presented of recent results obtained as part of the extension of the Center of Astrophysics redshift survey. Several features of the results are striking. The distribution of galaxies in the sample, which contains 1100 galaxies in a 6 deg x 117 deg strip going through the Coma cluster, looks like a slice through the suds in the kitchen sink. It appears that the galaxies are on the surfaces of bubble-like structures with diameters of 25-50/h-Mpc. The largest bubble in the survey has a diameter comparable with the most recent estimates of the diameter of the void in Bootes. This topology poses serious challenges for current models for the formation of large-scale structure. The best available model for generating these structures is the explosive galaxy formation theory of Ostriker and Cowie (1981)”.

I carry on in the paper the obvious kind of calculation: expansion of matter by means of a spherical shell of galaxies. The paper has been accepted with minor changes. Here is its link Dark matter does not exist at all .

THE STANDARD COSMOLOGICAL MODEL HAS BEEN SHATTERED

In a recently published article J. T. Nielsen, A. Guffanti & S. Sarkar have reported only Marginal evidence for cosmic acceleration from Type Ia supernovae. This bold faced phrase is the title of the paper which was based on data from 740 supernovas. I reproduce below the paper’s abstract.

The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.